Thesis Final Report

Fraser Centre

State College, Pennsylvania

Thesis Final Report

Tyler Strange

Structural Option

AE Consultant: Dr. Thomas Boothby

April 7, 2011

Table of Contents

١.	Project Abstract
II.	Executive Summary4
111.	Acknowledgements5
IV.	Introduction6
V.	Existing Structural Systems7
VI.	Design Criteria9
VII.	Problem Statement11
VIII.	Proposed Solution11
IX.	Gravity System Design
Χ.	Lateral System Design
XI.	MAE Topics16
XII.	Construction Management Breadth17
XIII.	Architectural Impact
XIV.	Summary and Conclusions
XV.	References24
XVI.	Appendix A: Composite Floor Design25
XVII.	Appendix B: Lateral System Output and Calculations
XVIII.	Appendix C: Wind Calculations
XIX.	Appendix D: Seismic Calculations41
XX.	Appendix E: Cost and Schedule Estimates

Project Abstract

Thesis Final Report

Executive Summary

Fraser Centre is a mixed-use, high-rise development located in State College, Pa. The 11 story structure has been designed using a two-way concrete slab with concrete shear walls.

In Technical Report 3, lateral loads were found to be resisted by two shear walls on the east end of the building. In an effort to reduce the torsion created by this configuration, shear walls on the theater level were extended throughout the building. The new shear walls were then redesigned for the new load distribution. With the new layout of shear walls an alternate floor system, composite deck, was also studied.

Two non-structural breadth analyses were also undertaken. An analysis and slight redesign of the architectural layout of the residential floors was conducted. This analysis determined that the shear wall layout had a minimal impact on the architectural floor plan. In addition to the architectural redesign a cost and schedule analysis was completed for the existing design and the new design. This analysis helped determine if the proposed changes were economical.

With these analyses it was determined that the proposed changes were not economical or recommended. The floor system did reduce the building weight, but it also increased the building height. The cost and schedule analysis showed that the new floor system reduced the construction time but also significantly increased the cost of the project. The new shear wall layout had very little impact on the architecture of the residential floors but is not a recommended change if the proposed floor system is not going to be used.

Thesis Final Report

Acknowledgements

I would like to extend acknowledgments to the following individuals and firms:

- Susquehanna Real Estate LP
- Leonard S. Fiore, Inc.
- The Pennsylvania State University
 - Professor M. Kevin Parfitt
 - Professor Robert Holland
 - Dr. Thomas Boothby
 - The entire AE faculty and staff

I would also like to give a special thank you to my family, friends, and fellow classmates for all the support and encouragement.

Thesis Final Report

Introduction

The Fraser Centre is a mixed-use, high-rise development located in downtown State College, Pennsylvania (See Fig. 1). The site will encompass an entire block on the corner of Beaver Avenue and Fraser Street, at an approximate elevation of 1100 feet above sea level. The development was designed by Wallace, Roberts, and Todd LLC, to be the only building in State College to have an all glass and aluminum façade. The structure was engineered by David Chou and Associates, Inc.; the MEP was engineered by AKF Engineers; and the theater was engineered by JKR Partners, LLC.

Figure 1: Site view of Fraser Centre (blue) bounded by Fraser St., Calder Way, Miller Alley, and Beaver Ave. Photo courtesy of Bing Maps.

Fraser Centre is an eleven story multi-use building. The first floor is exclusively parking; with 94 parking spaces. Residential parking takes up the majority of the second floor along with the theater lobby and 3 retail spaces. The entire third floor is occupied by the ten-auditorium movie theatre. The mechanical equipment is located on the fourth floor, or mechanical floor. At the fourth floor the building foot print reduces from roughly 270ft x 165ft to 190ft x 76ft. Floors five through eleven are all residential levels; floor five consists of nine units, levels six through ten all have eight units, and three penthouse suites makes up the penthouse or eleventh floor.

The structural system of Fraser Centre is reinforced concrete. The gravity load resisting system consists of concrete columns, shear walls, and two-way slabs. The lateral system is composed of reinforced concrete shear walls located throughout the entire building.

Existing Structural Systems

Gravity System

Columns are designed with 5000 psi concrete for the columns below the sixth level and 4000 psi concrete will be used for columns above the sixth level. Figure 2 in the Appendix shows the column locations and the column size and reinforcement can be found in Figure 3a through 3g. Column sizes vary from 18"x24" and 16"x32" to 24"x72" and 36"x60" and there are also 24" diameter columns.

Beams on level 2 garage vary in width from 10" to 36" with 18" being the most common and a depth between 24" and 111", 30" is the most common depth. The theater level beams vary from 12" to 72" and 20" to 48" in width and depth respectively. Beams vary in depth from 24" to 40" and 16" to 48" on the mechanical floor. 12"x 78" and 48"x30" is the range of beams on the roof. All beams are made with 4000 psi concrete.

The parking garage has 9" slabs on grade reinforced with 13#5 bars on top and a bottom grid of #4 bars at 12" each way. 4000psi concrete will be used for the slab on grade. 18#5 top bars and a grid of #5 bottom bars at 12" reinforce the 14" concrete slab of the theatre level. In addition to #7 bottom bars at 9" East-West and #5 bottom bars North-South in the 16" slab, the mechanical floor also has a 12'-6"x7' transfer girder with 40 #11 bottom bars and 20 #11 top bars. The residential levels and penthouse (5 through 11) as well as the roof have 12" slabs reinforced with a grid of #5 bars at 14" east-west and 12" north-south. All of the structural slabs will have 5000 psi concrete and a typical span of 40 feet. Steel beams are used for the projection of the mezzanine floor, and they vary from W8x10 to W12x22.

Lateral System

Concrete shear walls will be used in Fraser Centre to resist lateral loads. Shear walls are composed of 5000 psi concrete and reinforced with #5 horizontal bars and #6 vertical bars. Shear walls are located along column lines 3, 4, 5, 6, and 7 as shown in Figures 2 and 3. The theatre level has 14" shear walls and 16" walls are typical of the parking levels and the residential levels.

Current shear walls

Design Criteria

The following data is provided to illustrate the general design criteria for Fraser Centre.

Codes & Design Standards

Applied to Original Design
International Building Code IBC 2006
American Concrete Institute Building Code ACI 318-05
American Institute of Steel Connection AISC, 9 th Edition
Steel Deck Institute SDI Specification
Building Code Requirements for Masonry Structures ACI 530-05
American Society for Civil Engineers ASCE 7-05

Substituted for Analysis			
International Building Code IBC 2006			
American Concrete Institute Building Code ACI 318-08			
American Institute of Steel Connection AISC, 13 th Edition			
American Society for Civil Engineers ASCE 7-10			

Table 1: Codes and Standards used for Original Design and Analysis.

Thesis Final Report

Material Strength Requirements

Material	Strength Requirement	
Cast –In-Place Concrete:		
Footings	4 ksi NWC	
Basement and Bearing Walls	4 ksi NWC	
Shear Walls and Columns	5 ksi NWC	
Grade Beams and Slab on Grade	4 ksi NWC	
Structural Slab	5 ksi NWC	
Reinforcement	ASTM A615, Grade 60	
Structural Steel:		
Steel Shapes	ASTM A992	
Structural Tubes	ASTM A500	
Plates	ASTM A36	

Table 2: Material Strength Requirements per drawing S001

Dead and Live Loads

Area	Design Live Load (psf)
Roof/Ground Snow (from drawing S001)	Min 40
Mechanical	125
Rooms	40
Stairs/Public Rooms/Corridors/ Balconies	100
Theater	60
Retail Sales	100
Light Storage	125

	Design Super-Imposed Dead Load (psf)
Roofing	10
Partitions	20
4" Hollow Non-Bearing Block	30 (/sf of wall)
8" Hollow Non-Bearing Block	55 (/sf of wall)
Brick Veneer	40 (/sf of wall)

Table 3: Design Live and Super-Imposed Dead Loads per drawing S001

Thesis Final Report

Problem Statement

In Technical Report 3, wind loads were found to be the controlling load condition for the structure of the Fraser Centre. There are two components of every lateral load, direct and torsional. One way to reduce the lateral loads experienced by the lateral force resisting system is to reduce the eccentricity between the center of rigidity and the resultant force.

Proposed Solution

Since the controlling lateral load was determined to be seismic, a center of rigidity closer to the center of mass would reduce the torsional component of the wind load. By continuing the shear walls of the theater up to the roof the lateral force resisting system will be more evenly distributed than the current layout. The current layout only has two shear walls that continue from foundation to roof located on the east side of the building.

With the change to the shear wall layout, a composite slab and beam floor system will be used instead of the current two-way concrete floor. The composite nature of the proposed slab also allows for a thinner slab which reduces the weight and there for the seismic loads felt by the building. This will further reduce the load the shear walls will experience.

Changing the floor system to a composite system could also reduce the construction time allowing for earlier occupancy. This would result the not having to place and remove formwork for the floor. A composite floor will allow faster construction by erecting beams, girders, and metal deck instead of formwork.

Gravity System Design

Composite Deck/Slab Design:

Utilizing the Vulcraft design guide and catalog a deck/slab section was chosen with the following properties:

3VLI 18 Deck

f'c=4 ksi (normal weight concrete)

total slab thickness= 4.5"

18 gage

Composite Weight= 75 psf

3 span construction

Maximum Unshored Span= 12'-0"

Clear span= 10'-0"

Maximum Superimposed Load= 246 psf

Superimposed Load= Live + Dead= 135 psf

Full Composite Action:

The floor system employs full composite action. Full composite action allows the concrete floor slab to play a more significant role in the beam design. Shear connectors transfer all the compressive forces to the concrete slab while the tensile forces are resisted by the steel beam.

Figure 4: Full Composite Action

Partial Composite Action:

In partial composite action, the shear connectors transfer only a fraction of the compressive forces from the beam to the concrete slab.

Figure 5: Partial Composite Action

The composite deck design will add an additional 13" to the floor depth. This increase in depth was managed by decreasing the floor to ceiling height 7" and increasing the floor to floor height 6", this added an additional 3' the overall building height. Calculations of individual structural members can be found in Appendix A.

Thesis Final Report

Lateral System Design

The lateral system was modified to utilize more continuous concrete shear walls. The shear walls were designed using an ETABS model and checked with hand calculations. Due to the lack of flexibility of the parking level floor plan, the shear walls were unable to be extended from the theatre to the foundations. As a result of this the shear walls were only extended upwards through the residential levels. The ETABS model of the shear walls of the residential floors was created as shown in Figure 8. Wind and seismic loads were applied to the model and drift was compared for the wind and seismic load cases. It was determined that seismic loads will control the design of the building. The shear walls are 14"

design of the building. The shear walls are 14" Figure 8: ETABS Model of Residential Shear Walls thick. The design output from ETABS as well as the hand check can be found in Appendix B.

The deflections caused by the wind load were compared to L/400 for building displacement story drifts were also compared to 0.3 in, the lower limit of L/400 for story drift. At the roof, the maximum deflection above the 5^{th} floor was 0.187" which passed the L/400 requirement of 3.31". Table 4 summarizes the displacement and story drifts due to the wind load.

Level	Displacement	Drift
Roof	0.187	0.036
10	0.151	0.034
9	0.117	0.033
8	0.084	0.030
7	0.054	0.026
6	0.028	0.018
5	0.010	0.010

Table 4: Wind Displacements

Level	Displacement	Drift
Roof	0.392	0.077
10	0.315	0.072
9	0.243	0.070
8	0.173	0.067
7	0.110	0.053
6	0.057	0.039
5	0.018	0.018

Deflections due to the seismic load were compared to 0.025h, the allowable seismic drift. The maximum displacement at the roof was 0.392" which passed the 0.025h requirement of 2.64". Table 5 summarizes the displacement and story drifts due to the seismic load.

Table 5: Seismic Displacements

Thesis Final Report

MAE Topics

As required for this project, important concepts and skill sets pertaining to MAE coursework were integrated into the proposed solution. To redesign the lateral system computer modeling software and techniques learned in AE 597A will be used. Material properties were modified as necessary. Point masses were employed for floor mass as well as the application of seismic loads. A rigid diaphragm was accomplished by imposing translation constraints on points of individual floors. Shear wall meshing was used to obtain more realistic results.

Steel connections were also designed for the composite floor using knowledge from AE 534. Using processes learned in AE 534 steel connections were designed using Table 10-11 from the AISC Steel Manual. Welded/bolted connections were implored for beam/girder connections and bolted/bolted connections were used for girder/shear wall connections. Steel connection calculations can be found at the end of Appendix A.

Construction Management Breadth

The goal of the construction management breadth was to compare the impact on the cost and schedule when changing the original system to a composite system. A cost comparison of the proposed and original systems was undertaken to determine the economic effects of the changes. This comparison included the impact the changes will have on the schedule. The material and construction costs of the composite system were then compared to the costs of the current system. Since a delay in opening would cost the owner in lost income, it is important to not impact the schedule in a negative manner.

From the cost analysis of the original system, the floor for a single residential level would cost approximately \$2,310,000 with 95% of the cost coming from placing form work. The composite floor is estimated at \$7,050,000 and 77% of the cost coming from the metal deck. The price difference suggests that a composite floor system is not a viable alternative; the total increase in cost for all seven residential levels would be roughly \$33,000,000.

Description	Total Cost (O+P)	Cost
		Estimate
In Place Forms	11.29	\$2,212,344
In Place Reinforcing	1625.00	\$3,432
4 ksi Ready Mix	92.50	\$60,492
Placing Concrete	20.50	\$37,658
	Total	\$2,313,926

Table 6: Current System Cost Analysis

Description	Total Cost (O+P)	Cost Estimate
Structural Steel W16x31	38.50	\$260,360
Structural Steel W18x76	88.00	\$829,142
Structural Steel W10x12	21.00	\$74,388
Structural Steel W12x16	22.63	\$333,574
Metal Decking	3.12	\$5450,667
Weld Shear Conn	2.11	\$66,409
4 ksi Ready Mix	92.50	\$20,234
Placing Concrete	20.50	\$12,596
	Total	\$7,047,374

Table 7: Alternative System Cost Analysis

When comparing the impacts on the schedule a single crew was originally assumed with a slight overlap in progress. This resulted in the form work requiring 29 days to place and the original system taking 26 days longer to complete one floor. In an effort to reduce the schedule difference two crews were used

to place the form work, all other tasks were still completed by a single crew. The additional crew allowed the formwork to be placed in 17 days and reduced the original system's schedule to 23 days. The proposed system is scheduled to complete a single floor in 9 days. By changing to a composite floor system the project could be completed 36 days earlier. By completing the project earlier the owner will be able to occupy the building and begin charging tenants earlier. Although early completion is a significant improvement to a design, in this case it was assumed that the early completion did not offset the increase in cost. The complete breakdown and schedule can be located in Appendix E.

Description	Daily Output	Schedule (Days)
In Place Forms (2 crews)	931.0	17
In Place Reinforcing	2.9	7
Placing Concrete	180.0	3

Table 8: Current System Task Duration

Description	Daily Output	Schedule (Days)
Structural Steel W16x31	900	1
Structural Steel W18x76	900	1
Structural Steel W10x12	600	1
Structural Steel W12x16	880	1
Metal Decking	2850	6
Weld Shear Conn	910	1
Placing Concrete	180	1

Table 9: Alternative System Task Duration

Thesis Final Report

Architectural Impact

The new layout of the shear walls for the residential floors can be seen in figure 9 and 10. After examining the new shear walls and the current architectural layouts for the residential floors it was determined that the new layout will only have a minor impact on the architecture. Figure 12 and 11 show the only walls that impact the layout of floors 5 through 6. Figures 13 through 16 show the impact of the shear walls on the layout of the 11th floor.

Thesis Final Report

As shown in Figure 11, there is no architectural impact from the new shear walls at that location. The shear walls within the area marked for Figure 12 will have a slight impact on the architecture of the Living/Dining Room. The width of the southern part of the room will become 1'-2 ¼" shorter, but this will also create a more regular space by removing the setback in the eastern wall.

Figure 11: New Layout for 11^{th} Floor

Figure 12: New Layout for 11th Floor

Thesis Final Report

The architecture of the eleventh floor will need to be altered more than the lower levels in order to accommodate the new shear walls. The bedroom shown in Figure 13 will become a rectangular room 9'-6" wide when the east wall is brought out 1'-1 $\frac{1}{2}$ ". In Figure 14 the bedroom and dining room will both be affected. The wall will encroach into the bedroom 6" and the dining room 3 $\frac{1}{2}$ ". The 6" in the bedroom will result in the partition forming an entryway being shortened by 6". In the living room shown in Figure 15 the wall on the eastern side will become straight after the 1' setback is removed. Figure 16 shows how the width of the bedroom in that area is only shortened by 9" which will change the room from being more or less square to a possibly more interesting rectangle. As can be seen from the Figures the new shear layout will have a minimal impact on the current layout and architecture of the residential floors.

Figure 13: Architecture Impact for 11th Floor

Figure 14: Architecture Impact for 11th Floor

Figure 15: Architecture Impact for 11th Floor

Thesis Final Report

Summary and Conclusions

Using a composite beam system for Fraser Centre does not seem to be a viable alternative to the current system. The composite floor system allowed the project to be completed over a month earlier, and although this is a very large positive it is negated by the additional \$4.7 million per floor cost involved in constructing the system. The cost of using the steel deck was the single most influential factor in the new floor system. The composite system provided a lighter floor for seismic design while increasing the depth of the floor to 13". This increase in depth and additional cost of this system is why it is not a viable alternative. The new shear wall layout resulted in less torsion and resulted in 14" thick shear walls in the residential floor. These additional walls will have a minimal impact on the architecture of those floors. In conclusion, the composite floor system and shear wall layout is not a recommended alternative to the current system.

Thesis Final Report

References

International Building Code (IBC) 2006 American Concrete Institute (ACI) Building Code 318-08 American Institute of Steel Construction (AISC) 13th Edition American Society of Civil Engineers (ASCE) 7-10 RS Means "Building Construction Cost Data" 2005 Edition ETABS (Computer modeling program)

.

Thesis Final Report

Appendix A: Composite Floor Design

			composite floor page 1 of
	loads		
	live loads = 40 psf superimposed d1 = 20 psf	4 1/2 " concr.	ele - 2 hr rating
	3"VLI vuleraft com,	posite deck 18 gage	= weight=75psf
	max unshared cle	ar span 121-0" => 3 spa	2
	clear span = 10	-0"	
D.	live load + dea	d load = 40 psf + 20 psf + -	75 psf = 135psf <181psf :. ok
AMPA	beamdesign B1		
N	11111111111		tributary width: 13.33'
	A A	Vu= Wul= 2 2	04=75 (1.1) +20=102.5 psf
	20 <i>f</i> +	Vn = 28.7 kips M = wal 2 2.87 (20)2	$a_{14} = 1.2 (102.5) + 1.6 (40) = 187 psf$
		$M_{\mu} = 93.5^{1k}$	Wh - 18/11 - 9 - 1107, 944
	assume x=7.5" Y=7.5"	5-1-20	
	12=7:3-3	use 12=6.5 (to be conse	rvative)
	ty W10 x 12 => \$Mp=17	7.3 $Y = 0, \chi 0^{4} \Rightarrow P M_{n} = \Sigma Q_{n} = 93 E^{k}$ $E study = \Sigma Q_{n} = \frac{93 E}{Q_{n}} = 5.4 \pm 3$	110 1k 3/4" studs; weak; I deck 6 studs => 12 studs across entire beam
	Mus = 94.7	184 < 110 1k :. ok	
	· Vin = 25.2		
	check assumption		
	6 eff = [10] min 29	$b_{eq} = 5'(12) = 60''$	
~	$a = \frac{zq_n}{0.85}$	73.7 = 0.3 8" < 1.5 Fébere 0.85(5)(60)	"; conservative
	check construction	$m load DL = 82.5(10) M_c = \frac{0.852(3)}{8}$	02)=41. 95 1× < 47.31× :. 0k

composite floor page 2 of check deflection $a_{core} = \frac{5wl^4}{384EI} = \frac{5(0.837)(20^4)(1728)}{384(24000)(53,8)} = 1.93''$ alimit = 1/2 = 20(12) = 0.67" < 1.93" : no good with 1/2" camber Ireg' = 88.81" 45e h1 12×16 \$ I= 103 =) Dens= 1.01" => 1/2 in conder=) Dens= 0.51 in <0.67 in i.ok △ live = S(0,04)(10)(20)4(1728) = 0.481 20,67 = 1/260 :.ok check shear Vh = 18.7 k Vh < AVn i.ok 6Vn= 79-1K "AMPAD" sinder design GI Ww = 37.4(3) = 2.8 K/44 > / mining Mu = We 12 2.8(40)2 = 560 1k AISC table 3-10 - economical use W 24×68 => pMn = 5911k = 5601k :. ok V== 2.8(40) = 56K bVn= 295 × > 56 × .. ok check deflection 1/360 = 1.33" Brine = 5 wal 4 = 5(0.04)(20)(404)(1728) = 0.868" < 1.33" :.ok = archiledural use $W_{18\times76} = 5 \ bM_{18} = 600^{12} > 560^{14} :.ot = 600^{12} > 560^{14} :.ot = 500^{12} = 1.79^{11} = 1.33^{11} :.ot = 500^{12} (20)(10^{4})(1720) = 1.79^{11} = 1.33^{11} :.ot = 500^{12} (20)(10^{12})(1720) = 1.79^{11} = 1.33^{11} :.ot = 1.53^{11} :.ot = 1$ 22.2 in ches deep use 7 10. 2 Seeper then cur systen Beam B1 = W 12x16 Girder G1=> W18×76 Beam B2= WIOX12 Ginder G2=> W16×31

composite floor page 3 of Beam B2 Vu= wul = 1.87(10) Mu= wul2 = 1.87 (10)2 TTTT 2n=187pst Wn= 1.87 5174 101 Vn = 9.35 k Ma = 23.38 1k assume a=1.5" Y= 7.5" Y2=7.5-17 =6.75 use YZ= 6.5 (conservative) Try WIOXA =) AMp= 47.3 1k Y1=0.210"=> + Mn=110 1k Eqn=93.6k Hastuds = 93.6 S.M = 6 persibe = 12 studs across entire beam Mug=0.012(10)2=0.1512 Mu= 23,38+0.15 ML=23.53 1K < 1101k : ok check assumption 6 cor= = (10x -in 12=2.5. = 2.5(12) = 30 a= I.G. = 13.6 = 0.73" <1.5":, conservative check construction load DL= 82.5(10) +12=0.837 1/8+ ME=0.837(10)2 10.46 K = 47.31 :. 0k check deflection 6 cons = 5 w 14 = 5 (0.827) (104) (1728) = 0.12" Acons=0+12" <0.33" = Blinit i.ok Dimit = 1 = 10(12) = 0.33 1 Slive= 5(0.04)(10)(104)(1728) = 0.06" Dire=0.06" = 0.33"= 5 linit i.ok check shear Vu=9.35K < 79.1K = &Vn: ok > USE W10×12

comp Eloor page Yot Girder G2 P. 9.35(3) Ph= 9.35k = Wus 0.7 K Mu= 0.7(40) = 1401k Vn= 14K unbraced length = 101-0" AISC table 3-10 => W14+30 => +Mn = 1441K > 1401K = 0K +Mn = 1101K > 14 K = 0K check deflection 4360=433" Dive the intok △Line= 510.041151(104)(1725) = 1,37" try W16+31 => & INE= 1.37 (291)= 1.06" Drive & 40 inok Use W 16x31

comp floor 6 of Design connection C2 double angle connection bolted / bolted su Vn=56K 000 0 8 W18276 Table 10-1 A325N bolts 3/4" \$ 21/4 3 rows of bolts } bolt and angle dVn= 76.4 K Let = 1.1/2" uncoped => dVn= 263K +Vn=76.4 =>56 :. 0k

Appendix B: Lateral System Output and Calculations

ETABS v9.7.2	File:LATERA	L Uni	ts:Kip	-in Ma	rch 28, 2011	17:24 PAGE	1			
SUMMARY OUTPUT	T DATA - UNI	FORM R	EINFOR	CING PI	ER SECTIONS	- DESIGN (U	BC97)			
Story Label	Pier Label	Sta Loc	Edge Bar	End Bar	Edge Spacing	Required Ratio	Current Ratio	Pier Leg	Shear Av in^2/ft	B-Zone Length
STORY11	P4	тор	N12	N12	12.000	0.0025	0.0023	T 1 T 2	0.420	Not Needed
		Bot	N12	N12	12.000	0.0025	0.0023	B 1 B 2 B 3	0.420 0.420 0.420 0.420	Not Needed Not Needed Not Needed
STORY10	P4	тор	#4	#4	12.000	0.0025	0.0025	T 1	0.420	Not Needed
		Bot	#4	#4	12.000	0.0025	0.0025	B 1 B 2	0.420 0.420 0.420	Not Needed Not Needed Not Needed
STORY9	P4	тор	#4	#4	12.000	0.0025	0.0025	T 1	0.420	Not Needed
		Bot	#4	#4	12.000	0.0025	0.0025	B 1 B 2	0.420 0.420 0.420	Not Needed Not Needed Not Needed
STORY8	P4	тор	#4	#4	12.000	0.0025	0.0025	T 1	0.420	Not Needed
		Bot	#4	#4	12.000	0.0025	0.0025	B 1 B 2	0.420 0.420 0.420	Not Needed Not Needed Not Needed
STORY7	P4	тор	#4	#4	12.000	0.0025	0.0025	T 1	0.420	Not Needed
		Bot	#4	#4	12.000	0.0025	0.0025	B 1 B 2	0.420 0.420 0.420	Not Needed Not Needed
STORY6	P4	тор	#4	#4	12.000	0.0025	0.0025	T 1	0.420	Not Needed
		Bot	#4	#4	12.000	0.0025	0.0025	B 1 B 2	0.420 0.420 0.420	Not Needed Not Needed Not Needed
STORY5	P4	тор	N12	N12	12.000	0.0025	0.0022	T 1 T 2	0.420	Not Needed
		Bot	N12	N12	12.000	0.0025	0.0022	B 1 B 2 B 3	0.420 0.420 0.420 0.420	Not Needed Not Needed Not Needed

									•		
Story Label	Pier Label	Sta Loc	Edge Bar	End Bar	Edge Spacing	Required Ratio	Current Ratio	Pier Leg	Shear Av in^2/ft		B-Zone Length
STORY11	P5	Top Bot	#5 #5	#5 #5	12.000	0.0025	0.0039	T 1 B 1	0.420	Not Not	Needed
STORY10	P5	тор	#4	#4	12.000	0.0025	0.0025	T 1	0.420	Not	Needed
		Bot	#4	#4	12.000	0.0025	0.0025	B 1 B 2	0.420	NOL	Needed
STORY9	P5	тор	#4	#4	12.000	0.0025	0.0025	T 1	0.420	Not	Needed
		Bot	#4	#4	12.000	0.0025	0.0025	B 1 B 2	0.420 0.420 0.420	NOL	Needed
STORY8	P5	тор	#4	#4	12.000	0.0025	0.0025	T 1	0.420	Not	Needed
		Bot	#4	#4	12.000	0.0025	0.0025	B 1 B 2	0.420 0.420 0.420	NOT	Needed
STORY7	P5	тор	#4	#4	12.000	0.0025	0.0025	T 1 T 2	0.420	Not	Needed
		Bot	#4	#4	12.000	0.0025	0.0025	В 1 В 2	0.420 0.420	Not	Needed
STORY6	P5	тор	#4	#4	12.000	0.0025	0.0025	T 1 T 2	0.420	Not	Needed
		Bot	#4	#4	12.000	0.0025	0.0025	В 1 В 2	0.420 0.420	Not	Needed
STORY5	P5	тор	#4	#4	12.000	0.0025	0.0025	T 1 T 2	0.420	Not	Needed
		Bot	#4	#4	12.000	0.0025	0.0025	B 1 B 2	0.420 0.420	Not	Needed

Story Label	Pier Label	Sta Loc	Edge Bar	End Bar	Edge Spacing	Required Ratio	Current Ratio	Pier Leg	Shear Av in^2/ft	B-Zone Length
STORY11	P6	тор	N12	N12	12.000	0.0025	0.0023	T 1 T 2	0.420	Not Needed
								т 3	0.420	Not Needed
		Bot	N12	N12	12.000	0.0025	0.0023	B 1	0.420	Not Needed
								B 3	0.420	Not Needed
STORY10	P6	тор	N12	N12	12.000	0.0025	0.0022	т 1	0.420	24.300
								T 2	0.420	22.050
		Pot	N1 7	N1 2	12 000	0 0025	0 0022	T 3	0.420	NOT Needed
		DUL	NT2	NIZ	12.000	0.0025	0.0022	B 2	0.420	22 050
								в 3	0.420	Not Needed
STORY9	P6	тор	N12	N12	12.000	0.0025	0.0022	т 1	0.420	Not Needed
								TZ	0.420	Not Needed
		Bot	N1 2	N12	12 000	0 0025	0 0022	R 1	0.420	Not Needed
		BUC	NILL	NIZ	12.000	0.0025	0.0022	B 2	0.420	Not Needed
								В 3	0.420	Not Needed
STORY8	P6	тор	N12	N12	12.000	0.0025	0.0022	т 1	0.420	Not Needed
								T 2	0.420	Not Needed
		Bot	N12	N12	12 000	0 0025	0 0022	I 3 B 1	0.420	Not Needed
		BUL	INTE	NIZ	12.000	0.0025	0.0022	B 2	0.420	Not Needed
								В 3	0.420	Not Needed
STORY7	P6	тор	N12	N12	12.000	0.0025	0.0022	т1	0.420	Not Needed
								T 2	0.420	Not Needed
		Bot	N1.2	N1 2	12 000	0 0025	0 0022	T 3	0.420	Not Needed
		BUL	NIZ	NIZ	12.000	0.0025	0.0022	B 2	0.420	Not Needed
								в 3	0.420	Not Needed
STORY6	P6	тор	N12	N12	12.000	0.0025	0.0022	т 1	0.420	Not Needed
								т 2	0.420	Not Needed
		Bot	117	117	12 000	0 0075	0 0000	T 3	0.420	Not Needed
		BOL	NIZ	NIZ	12.000	0.0025	0.0022	B 2	0.420	Not Needed
								в 3	0.420	Not Needed
STORY5	P6	тор	N12	N12	12.000	0.0025	0.0022	т 1	0.420	Not Needed
								T 2	0.420	Not Needed
		Rot	N1 2	N1 2	12 000	0.0025	0 0022	T 3	0.420	Not Needed
		BUL	NT2	NTZ	12.000	0.0023	0.0022	B 2	0.420	Not Needed
								B 3	0.420	Not Needed

Story Label	Pier Label	Sta Loc	Edge Bar	End Bar	Edge Spacing	Required Ratio	Current Ratio	Pier Leg	Shear Av in^2/ft		B-Zone Length
STORY11	P7	тор	N12	N12	12.000	0.0025	0.0023	т 1	0.420	Not	Needed
			and services	the cases	ALLEN ALLEN		maning areast	т 2	0.420	Not	Needed
		Bot	N12	N12	12.000	0.0025	0.0023	B 1 B 2	0.420 0.420	Not	Needed
STORY10	P7	тор	N12	N12	12,000	0.0025	0.0023	т 1	0.420	Not	Needed
51011120		. op			121000	0.0025	0.0025	T 2	0.420		22.050
		Bot	N12	N12	12,000	0.0025	0.0023	B 1	0.420		24.300
								в 2	0.420		22.050
STORY9	P7	тор	N12	N12	12.000	0.0025	0.0023	т 1	0.420	Not	Needed
								т 2	0.420	Not	Needed
		Bot	N12	N12	12.000	0.0025	0.0023	B 1	0.420	Not	Needed
								В 2	0.420	Not	Needed
STORY8	P7	тор	N12	N12	12.000	0.0025	0.0023	т 1	0.420	Not	Needed
			1.122	10000	CHERCHARD CHERC	Shireshire	Sala and a state	т 2	0.420	Not	Needed
		Bot	N12	N12	12.000	0.0025	0.0023	B 1	0.420	Not	Needed
								B 2	0.420	Not	Needed
STORY7	P7	тор	N12	N12	12.000	0.0025	0.0023	т 1	0.420	Not	Needed
		77						т 2	0.420	Not	Needed
		Bot	N12	N12	12.000	0.0025	0.0023	В 1	0.420	Not	Needed
								в 2	0.420	Not	Needed
STORY6	P7	тор	N12	N12	12.000	0.0025	0.0023	т 1	0.420	Not	Needed
								т 2	0.420	Not	Needed
		Bot	N12	N12	12.000	0.0025	0.0023	В 1	0.420	Not	Needed
								в 2	0.420	Not	Needed
STORY5	P7	тор	N12	N12	12.000	0.0025	0.0023	т 1	0.420	Not	Needed
								т 2	0.420	Not	Needed
		Bot	N12	N12	12.000	0.0025	0.0023	B 1	0.420	Not	Needed
								в 2	0.420	Not	Needed

	OVA = Vm 7	
	V - V - V	
	$V_n = V_C + V_S$	
	Vh = 10 Fichd	
	= h= thickness of wall	Particular and a second s
	a - which	
1	V 102 000 11	
	Ve=22 Jfc hd	
"db	Ve 13.32 Fi hd + Nud	
MB	[12 Lw (1,252 VFE + 0.2 [wh])	
X	1. C. b.A. JF's + Mu-lw hd	
	min' - Wu 2	
	Av fyd	
	13 - 5	
	P. 2 0.0025	
	Sharz = 3h	
	min 18in	
	- 100025+05(25-5-6)(- 00020)	
	Se 0,0025	
	MAZ	
	S 1 L leup	
	-vert = 13 3h	
	min 18'n	
\bigcirc		

	slear wall Sc
0	$\begin{array}{l} max \ permitted \ shear \\ \delta V_{mmax} = \ \phi [0] \ F' E \ h \ \delta' \\ d = 0.8 l_w \ = 0.8 (37. \ 5000) \\ = \ 1855.2^{21} \\ \phi V_n \ max = \ 0.75 (10) \ \sqrt{1000} \ (14) (355.2) \ / 1000 \\ = \ 2357 \ k \ > \ V_n = \ F 7.4 \ k \ : \ o \ k \end{array}$
"DAD"	shear strength concrete $a = \left(\frac{lm}{2} = \frac{137}{2} = 18.5^{-1} = 30 \text{ verns}\right)$ $\frac{1}{2} = \frac{137}{2} = 38.5^{-1}$
A	$V_{c} = 3.3 \sqrt{4000}^{1} (14) (201) /_{1000}$ = $1280 k_{ips}^{1}$ $V_{c} = \begin{bmatrix} 0.6 \sqrt{4000}^{2} + \frac{3457 (1.73) \sqrt{4000}^{2}}{85331(2)} - \frac{3457}{2} \end{bmatrix} (14) (359) /_{1000}$
	$V_{h} = 91.3 k_{i} p_{s} \ll governs$ $V_{h} = 91.3 k_{i} p_{s} \ll y_{4} V_{c} = \frac{y_{4}(0,75)(528_{1})}{100} = 10085 k_{i} p_{s} ; use n'h inam$ $u_{sc} = \frac{1}{100} \frac{12^{n}}{12^{n}}$
	$p_{I} = \frac{Ar}{sh} = 0.0025 + 0.5(2.5 - \frac{22}{37})(0.005 - 0.0025)$ = 0.0024 < 0.0025 : as 0.0025 max s = 1211 :Ay gesh = 0.0025 (12)(14) = 0.52 = 0.52 = 0.52 = 0.0025 = 0.0025
	$F_{V}(A) = A_{V} = 0.42 = 9.42 = 12(14)$ $S = \frac{0.42}{2.0025(14)} = 12.41 = 0.18 = (2) = 4.00 = 12.41 = 0.42 = 0.12 = 12.41 = 0.42 = $
\frown	

Thesis Final Report

Appendix C: Wind Calculations

North/Sol	uth Pressure										-								
L/B (1-4)	0.630	D Leve	1 Z(ft)	K _z	q _z (psf)	q _h (psf)) Cp ww	C _{p LW}	Cp Side	Pww P	W Pside	. B (width	h) Story Height	Area	Force (kips)	Story Force	Story Shear	Overturning Moment	
L/B (5-R)	0.374	4 Roof	158.5	1.126	19.846	19.846	5 0.8	-0.500	-0.7	13.66 -8	1.54 -11	.95 2(03 2.75	558.25	12.4	24.7	24.7	3911.7	
~	90	0	155.8	1.111	19.573	3 19.846	5 0.8	-0.500	-0.7	13.47 -8	1.54 -11.	95 2(03 2.75	558.25	12.3				
R	0.85	11	153	1.095	19.300	19.846	5 0.8	-0.500	-0.7	13.28 -8	1.54 -11.	.95 2(03 8.2	1664.6	36.3	72.4	97.1	18762.9	
Exposure (Category B		144.8	1.082	19.065	19.846	5 0.8	-0.500	-0.7	13.13 -6	1.54 -11.	.95 21	03 8.2	1664.6	36.1				
K _{2t}		1 10	136.6	1.068	18.815	19.846	5 0.8	-0.500	-0.7	12.95 -8	1.54 -11	.95 21	03 6.15	1248.45	26.8	53.4	150.5	39323.1	
GCpi	+/- 0.16	60	130.5	1.054	18.573	319.846	5 0.8	-0.500	-0.7	12.78 -8	1.54 -11.	.95 2(03 6.15	1248.45	26.6				
α	7.0	6 0	124.3	1.040	18.331	19.846	5 0.8	-0.500	-0.7	12.62 -8	54 -11	.95 21	03 5.95	1207.85	25.6	50.9	201.4	64359.2	
°u	0.475	6	118.4	1.026	18.088	319.846	5 0.8	-0.500	-0.7	12.45 -8	1.54 -11.	.95 2(03 5.95	1207.85	25.4				
U	0.8604	60	112.4	1.013	17.846	5 19.846	5 0.8	-0.500	-0.7	12.28 -8	1.54 -11.	.95 2(03 5.9	1197.7	24.9	49.7	251.1	92582.1	
			106.5	0.999	17.604	19.846	5 0.8	-0.500	-0.7	12.12 -8	1.54 -11.	95 2(03 5.5	1197.7	24.7				
		7	100.6	0.984	17.344	19.846	5 0.8	-0.500	-0.7	11.94 -8	1.54 -11	.95 2(03 5.95	1207.85	24.7	49.2	300.3	122793.8	
			94.65	0.968	17.053	3 19.846	5 0.8	-0.500	-0.7	11.74 -8	1.54 -11.	.95 2(03 5.95	1207.85	24.5				
		9	88.7	0.951	16.762	19.846	5 0.8	-0.500	-0.7	11.54 -8	1.54 -11.	.95 2(03 5.925	1202.78	24.1	48.1	348.4	153693.9	
			82.78	0.935	16.471	19.846	5 0.8	-0.500	-0.7	11.34 -8	1.54 -11.	95 2(03 5.925	1202.78	23.9				
		Ś	76.85	0.914	16.110	19.846	5 0.8	-0.500	-0.7	3- 60.11	1.54 -11.	.95 2(03 5.925	1202.78	23.6	46.9	395.3	184069.6	
			70.93	0.892	15.722	19.846	5 0.8	-0.500	-0.7	10.82 -6	1.54 -11.	.95 2(03 5.925	1202.78	23.3				
		4	65	0.870	15.334	19.846	5 0.8	-0.500	-0.7	10.55 -8	1.54 -11.	.95 2t	62 16.5	4323	82.5	161.5	556.8	220261.2	
			48.5	0.803	14.145	19.846	5 0.8	-0.500	-0.7	9.74 -8	1.54 -11.	95 24	62 16.5	4323	79.0				
		m	32	0.712	12.545	19.846	5 0.8	-0.500	-0.7	8.64 -8	1.54 -11.	.95 2(52 10.5	2751	47.3	91.8	648.6	241017.3	
			21.5	0.632	11.139	19.846	5 0.8	-0.500	-0.7	7.67 -8	1.54 -11.	.95 2t	62 10.5	2751	44.6				
		2	11	0.570	10.047	19.846	5 0.8	-0.500	-0.7	6.92 -8	1.54 -11.	.95 2t	62 5.5	1441	22.3	44.5	693.2	248642.1	
			5.5	0.570	10.047	19.846	5 0.8	-0.500	-0.7	6.92 -8	1.54 -11.	.95 2t	62 5.5	1441	22.3				
		-	0	0.570	10.047	19.846	5 0.8	-0.500	-0.7	6.92 -8	1.54 -11.	.95 2t	62 C	0	0.0	22.3	715.4	248642.1	
																Total=	715.43	248642.1	

Aoment	3327.7		15927.1		33342.3		54514.0		78340.1		03798.9		129787.1		155278.8		186557.9		04637.4		11294.1		11294.1	
Overturning N											IJ		-				T		N		N		2	
story Shear	21.0		82.3		127.5		170.3		212.0		253.1		293.0		331.7		481.2		565.0		605.2		625.3	
Story Force	21.0		61.4		45.1		42.8		41.6		41.1		39.9		38.7		149.5		83.8		40.2		20.1	Contraction of the
Force (kips)	10.6	10.4	30.8	30.5	22.7	22.5	21.5	21.3	20.9	20.7	20.7	20.4	20.1	19.8	19.5	19.2	76.6	72.9	43.3	40.5	20.1	20.1	0.0	*
Area	558.25	558.25	1664.6	1664.6	1248.45	1248.45	1207.85	1207.85	1197.7	1197.7	1207.85	1207.85	1202.78	1202.78	1202.78	1202.78	4323	4323	2751	2751	1441	1441	0	
Story Height	2.75	2.75	8.2	8.2	6.15	6.15	5.95	5.95	5.9	5.9	5.95	5:95	5.925	5.925	5.925	5.925	16.5	16.5	10.5	10.5	<mark>5.5</mark>	5.5	0	
B (width)	203	203	203	203	203	203	203	203	203	203	203	203	203	203	203	203	262	262	262	262	262	262	262	
Pside	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	-12.40	
PLW	7 -4.73	3 -4.73	3 -4.73	2 -4.73	4.73	5 -4.73	9 -4.73	2 -4.73	4.73	7 -4.73	3 -4.73	3 -4.73	7 -4.73	5 -4.73	-4.73	3 -4.73	5 -6.77	-6.77	5-6.77	5 -6.77	7 -6.77	7 -6.77	7-6.77	
Pww	14.1	13.98	13.78	13.62	13.4	13.26	13.09	12.9	12.74	12.57	12.38	12.18	11.97	11.76	11.50	11.23	10.9	10.10	8.96	7.95	7.17	7.17	7.17	
Co Side	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	
No LW	-0.267	-0.267	-0.267	-0.267	-0.267	-0.267	-0.267	-0.267	-0.267	-0.267	-0.267	-0.267	-0.267	-0.267	-0.267	-0.267	-0.382	-0.382	-0.382	-0.382	-0.382	-0.382	-0.382	
Co WW	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	ľ
, (psf)	9.846	9.846	9.846	9.846	19.846	19.846	9.846	19.846	9.846	9.846	9.846	9.846	19.846	9.846	9.846	9.846	19.846	19.846	9.846	9.846	9.846	9.846	9.846	
(psf) q	9.846	9.573	9.300	E 690.6	3.815	8.573	3.331	3.088	7.846	7.604	7.344	7.053	5.762	5.471	5.110	5.722	5.334	4.145	2.549	1.139	0.047	0.047	0.047	
ő	126 1	111 1	.095 1	.082 1	.068 1	.054 1	.040 1	.026 1	.013 1	1 666	984 1	968 1	951 10	935 1	914 1	.892 1	870 1	803 1	712 1	632 1	570 10	570 1	570 10	
t) K,	8.5 1	5.8 1	1	4.8 1	6.6 1	0.5 1	4.3 1	8.4 1	2.4 1	6.5 0	0.6 0	65 0	7 0	78 0	85 0	93 0	0	5 0	0	5 0	0	0	0	
el Z(fi	of 15	15	15	14	13	13(12.	11	11	10	10	94.	88	82.	76.	70	65	48.	32	21.	11	5.5	0	
Lev	Rot		11		10		6		00		2		9		S		4		n		2		Ţ	
1.588	2.671	06	0.85	egory B	1	+/- 0.18	7.0	0.475	0.8926															
East/West I /B (1-4)	/B (5-R)		.9	Exposure Cat	,es	3C _{pi}		2																

Thesis Final Report

Appendix D: Seismic Calculations

	Seismic Calos		
	Seismic Importance factor	I=1.25	latitude: 40.793°
	Risk Category : III		long itude: - 77.862°
	Seismic Design Category P		
	Site Class B		
MPAD"	Ss= 0.1479 S,= 0.0499	Ss \$ S, obtained fro calculator	nn VSGS Ground motion Parameter
R	Sms = Fass		
	Sm, = Fy Si		
	Sos = 3/3 Sms		
	So1 = 3 Sm1		
	Ta=Cthx		
	$T = C_n T_a$		
	Cs = RII		
	$\left \frac{\Delta \mu_{i}}{T(\mathcal{F}_{f})} \right $		
	$\frac{S_{01}T_{k}}{T^{2}(\mathcal{P}_{k})}$		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	Vs=C=W		
	dicto'l' tim platory shears		
	E = Cur Vi		
	Cin = Wxhx		
	Switch		
	Yx = EFi		

200	N-S	E-W	-			k=1.38			Story Shear
W(kips)=	65(	336	Level	h _x (ft)	W _x (kips)	$w_x h_x^k$	C _{v,x}	F _x	V×
F _a =	1.	0	Roof	158.45	2533	2750974	0.1190	236.93	0.00
F _v =	1.	0	11	152.95	3295	3408268	0.1474	293.54	236.93
S _s =	0.1	.47	10	136.6	2979	2636286	0.1140	227.05	530.46
S ₁ =	0.0	49	6	124.25	2939	2282068	0.0987	196.54	757.51
R (Table 12.2-1:A2)=	4.0	4.0	ø	112.4	2939	1987271	0.0859	171.15	954.05
а П	1.	25	7	100.55	2939	1704068	0.0737	146.76	1125.21
S _{ms} =F _a S _s	0.1	47	9	88.7	2939	1433290	0.0620	123.44	1271.97
$S_{m1}=F_vS_1$	0.0	149	5	76.85	3056	1222762	0.0529	105.31	1395.41
S _{DS} =2/3S _{ms}	0.0	980	4	65	7915	2513456	0.1087	216.47	1500.72
S _{D1} =2/3S _{m1}	0.0	327	ŝ	32	25244	3014846	0.1304	259.65	1717.19
T _a =C _t h _n ^x	0.9	00	2	11	6316	172808	0.0075	14.88	1976.84
T=CuT _a	1.2	60	1	0	1942	0	0	0	1991.73
C _s =1 S _{Ds} /(R/I)	0.0306	0.0306							
S _{b1} /[T(R/I)]	0.0081	0.0081							
S _{D1} T ₁ /[T ² (R/I)]	0.0386	0.0386							
V _b =C _s W	1991.7	1991.7							

## Thesis Final Report

### **Appendix E: Cost and Schedule Estimates**

-	hedule (Days)	16.54	7.01		3.17					hedule (Days)	0.37	0.75	0.44	0.86	5.40	0.50		1.06	
-	Cost Estimate Sc	2,212,344	3,432	60,492	37,658	2,313,926				Cost Estimate Scl	260,361	829,142	74,389	333,575	5,450,667	66,410	20,235	12,597	7,047,374
	City Cost Index (	93.8	93.8	93.8	93.8	Total				City Cost Index (	102.2	102.2	102.2	102.2	102.2	102.2	93.8	93.8	Total
	Total Cost (O+P)	11.29	1625	92.5	20.5					Total Cost (O+P)	38.5	88	21	22.63	3.12	2.11	92.5	20.5	
-	Bare Cost	7.37	1270	84	14.38					Bare Cost	33.77	6.77	17.21	19.24	2.56	1.48	84	14.38	
:	Unit	SF	Ton	ς	сY					Unit	LF	Ч	LF	ĽF	SF	Ea.	ς	ς	
	# Units	15400	20.34	571	571					# Units	336	672	264	756	15400	454	191	191	
:	Labor-Hours	0.09	11.03	1	0.356					Labor-Hours	0.062	0.089	0.093	0.064	0.011	0.018	1	0.356	
	Daily Output	931	2.9	1	180					Daily Output	006	006	600	880	2850	910	1	180	
	Crew	(2) C-2	4 Rodm		C-20					Crew	E-2	E-5	E-2	E-2	E-4	E-10	1	C-20	
:	Description	In Place Forms	In Place Reinforcing	4 ksi Ready Mix	Placing Concrete		100	81.9		Description	Struct. Steel W16x31	Struct. Steel W18x76	Struct. Steel W10x12	Struct. Steel W12x16	Metal Decking	Weld Shear Conn	4 ksi Ready Mix	Placing Concrete	
Current System	Number	03110-420-2100	03210-600-0400	03310-220-0300	03310-700-1500		2011 Cost Index=	2005 Cost Index=	Proposed System	Number	05120-640-2900	05120-640-0603	05120-640-0600	05120-640-1100*	05310-300-5900	05090-840-0800	03310-220-0300	03310-700-1500	

